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Abstract. Object-oriented NeuroSys is a collection of programs for
simulating very large networks of biologically accurate neurons on dis-
tributed memory parallel computers. It includes two principle programs:
ooNeuroSys, a parallel program for solving the large systems of ordinary
differential equations arising from the interconnected neurons, and Neu-
rondiz, a parallel program for visualizing the results of ooNeuroSys. Both
programs are designed to be run on clusters and use the MPI library to
obtain parallelism. ooNeuroSys also includes an easy-to-use Python in-
terface. This interface allows neuroscientists to quickly develop and test
complex neuron models. Both ooNeuroSys and Neurondiz have a design
that allows for both high performance and relative ease of maintenance.

Keywords: parallel computing, parallel CVODE, parallel visualization,
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1 Introduction

One of the most important problems in computational neuroscience is under-
standing how large populations of neurons represent, store and process infor-
mation. Object-oriented NeuroSys is a collection of parallel programs that have
been designed to provide computational neuroscientists with powerful, easy-to-
use tools for the study of networks of millions of biologically accurate neurons.
It consists of two principle programs: ooNeuroSys, a program for solving the
systems of ordinary differential equations resulting from large networks of in-
terconnected neurons, and Neurondiz, a program for visualizing the results of
ooNeuroSys. Both programs use an object-oriented design which makes it rel-
atively easy to add features and change underlying data structures and algo-
rithms. This design has also allowed us to achieve levels of performance better
than earlier, structured versions of these programs [12].

In addition to improving performance and maintainability, Object-oriented
NeuroSys is much easier to use than the earlier versions. Inter alia, we have
completely redesigned the GUI for Neurondiz and we have added a Python [13]
interface to ooNeuroSys which allows users to code and test neuron models with
relative ease.

The differential equation solver, ooNeuroSys, employs an adaptive commu-
nication scheme in which it determines at runtime how to structure interprocess
communication. It also makes use of the parallel CVODE library [2] for the
solution of the systems of ordinary differential equations.

In this paper we discuss the problems we encountered with an earlier version
of NeuroSys and how we decided to address these in ooNeuroSys. We continue
with a discussion of the communication schemes we used in ooNeuroSys, the new
version of Neurondiz, the Python interface, the performance of Object-oriented
NeuroSys, and directions for further development.

Acknowledgements. The first author thanks the W.M. Keck Foundation
for a grant to build a cluster for use in research and education and partial support
of this research. The work of the first and second authors was performed under
the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory under contract W-7405-ENG-48.

2 ooNeuroSys Design

The original version of NeuroSys [11, 12] was written in the late 1990’s by USF’s
Applied Mathematics Research Laboratory. It is a very powerful system: we were
able to simulate sparsely interconnected systems consisting of 256,000 Hodgkin-
Huxley type [4] neurons on a 32-processor cluster with parallel efficiencies of
better than 90%. However, its design is essentially structured, and as it grew, it
became very difficult to incorporate new and to improve existing features. So in
the summer of 2001, we began a complete rebuilding of NeuroSys. One of the
central features of the new system is an object-oriented design that makes main-
tenance relatively easy, but actually improves both performance and scalability.



The original version of NeuroSys was written in C, and it used the MPI
library to obtain parallelism. Because of the ease with which the performance
and memory-usage of C code can be optimized, we decided to continue to use
C for ooNeuroSys. Since our main target platform is clusters of relatively small
SMPs, we also continued to use MPI. In our object-oriented design classes are
defined in separate C source files. The data members are defined in a struct, and
the methods are just C functions whose first argument is a pointer to the struct.
Methods can be made private by declaring them to be static. During initial
development, underlying data structures are hidden by using incomplete types in
header files. That is, a data structure is declared in a dot-c file, and an incomplete
type that is a pointer to the struct is declared in the corresponding header
file. After initial development — when performance becomes a consideration —
underlying data structures are selectively exposed in the header files, and some
methods — especially accessor methods — are replaced by macros. A primitive
and, for our purposes, completely satisfactory form of inheritance is obtained by
declaring members of parent classes in macros in header files that are included
in child classes.

Both the original version of NeuroSys and ooNeuroSys take as input two
main data structures: a description of the neurons and their interconnections
and a list of initial conditions for the variables associated with each neuron. For
production simulations these data structures are stored in files and read in at
the beginning of program execution. The output of the program is the raw data
produced during the simulation, i.e., a collection of variable values as specified
by the user.

The original version of NeuroSys used a very simple parallel implementation
of a classical, fourth-order Runge-Kutta solver. Although we obtained excellent
efficiencies with as many as 32 processors, because of the large amount of com-
munication required, we did not expect this method to scale well for much larger
numbers of processors. So in ooNeuroSys we wrote a solver class which interfaces
with parallel CVODE [2], a general purpose ordinary differential equation solver
for stiff and nonstiff ODE’s. It obtains parallelism by partitioning the equations
and variables of the system among the parallel processes. Since the equations we
solve in ooNeuroSys are nonstiff, we use CVODE’s variable-stepsize, variable-
order Adams-Moulton solver. CVODE also uses an object-oriented design, and
since it was written in C, and it uses the MPI library, writing the solver class
interface was completely straightforward.

3 ooNeuroSys Communication

Since the equations and variables are partitioned among the processors, com-
munication is required when an equation depends on a variable assigned to a
different process. An interesting feature of neuronal interconnection networks is
that the interdependence can have almost any form. At one extreme the problem
can be almost perfectly parallel in that the equations assigned to each process
have little or no dependence on variables assigned to other processes. At the other



extreme, a problem may be “fully interconnected,” i.e., every neuron depends
on almost every neuron in the system. Thus the communication requirements of
a problem are only known at runtime: after the neuronal interconnection struc-
ture has been read in. The original version of NeuroSys partially addressed this
by providing compile-time options for choosing a communication scheme. This
has the obvious weakness that the program needs to be recompiled for different
interconnection networks. It has the added weakness that it requires the user to
evaluate the interconnection network and then determine which communication
program to use. Because of the nature of the problems (thousands or millions of
neurons with possibly random interconnects), it may be impossible for a human
to evaluate the interconnect, and expecting a neuroscientist to understand the
intricacies of interprocess communication schemes may be unreasonable. Thus,
ooNeuroSys determines automatically at runtime which communication scheme
to use.

Although we have written a variety of communication classes, in the problems
that we have studied thus far, we have found that only two of them are necessary
for the best performance. The first, which corresponds to a fully interconnected
system, is an implementation of MPI Allgather that uses a rotating scheme of
send/receive pairs, in which during the ith stage, i = 0, 1, . . . each process sends
all its data to

my rank+ 2i mod p,

where p is the number of processes. This results in a communication scheme
requiring dlog

2
(p)e stages. Its principle complication is that, in general, processes

will not be communicating contiguous blocks of data. However, our benchmarks
showed that for the data sets we expect to be of interest, both the MPICH [9] and
LAM [7] implementations of MPI Type indexed allowed us to obtain excellent
performance on fast-ethernet-connected clusters. We also found that using this
implementation with the MPICH-GM [10] implementation resulted in excellent
performance on Myrinet-connected clusters.

The second communication scheme is used for sparsely interconnected net-
works and is essentially that described in [15]. On the basis of the information
describing the assigned subnetwork, each process can determine which variables
it needs and to which process each variable is assigned. Thus, after a global
communication phase, each process knows both which variables it should receive
from which processes and which variables it should send to which processes.
Once each process has built its communication structure, the interprocess com-
munication is implemented by having each process post nonblocking receives for
all of the messages it needs to receive and then making blocking sends of all
the messages needed by the other processes. In experiments we found that this
“lazy” approach outperformed any heuristic scheduling schemes we devised.

A key feature of the systems modelled by NeuroSys is that if the neuronal
interconnection changes at all during a simulation, it usually doesn’t change
for hundreds or thousands of timesteps. We exploit this by building derived
datatypes and persistent requests only at the beginning of a run and when the
interconnect changes.



At the beginning of a run, after the neuronal interconnect has been read in,
the communication class uses a simple heuristic in order to determine which of
the two communication schemes is superior. If the number of processes is small
(typically ≤ 4), we use the dense scheme. Otherwise we use a (heuristic) algo-
rithm to construct a deterministic schedule for the sparse communications. If
the maximum number of stages required by the schedule is less than dlog(p)e,
then we expect the sparse scheme will outperform the dense scheme. On the
other hand, empirical tests have shown that if the maximum number of stages
is more than d4 log(p)e in the sparse scheme, then the dense scheme is likely to
be superior. For other interconnects, the program runs a short series of bench-
marks of each scheme, and chooses the scheme with the smaller overall run time.
Since the neuronal interconnection network changes infrequently, if at all, the
benchmarks add very little to the overall run time.

4 Neurondiz

Neurondiz takes the output data produced by ooNeuroSys and provides a graphic
display of the simulation. In order to handle the large amounts of data produced
by ooNeuroSys, Neurondiz has been divided into two components: a backend
that reads in and processes the ooNeuroSys data, and a frontend that manages
the display. The backend is written in C, and it uses the MPI library. We are
working on two versions of the frontend. For less demanding problems, we have
a Java frontend. We chose Java to allow for future deployment of a Neurondiz
applet, to provide an easy interface to other applications, and to allow for rapid
development of new functionalities. For more demanding applications the second
version of the frontend uses C++, the Qt application development framework
[14] and the OpenGL graphics library [16].

Neurondiz was especially designed to support two hardware configurations.
In one configuration, we assume the user is working with a parallel computer
with no graphics capability. For example, a user with access to a powerful remote
system at a supercomputer center could be considered to fall into this category.
In the other, a single node of the parallel computer is directly connected to
a display. For example, a user with a small local cluster might fall into this
category. The frontend-backend division of Neurondiz makes it relatively easy
to develop code for these two setups. In the first configuration, the frontend
and backend run on separate computers and they communicate using sockets. In
the second configuration, the frontend and backend reside on the same system
and their communication depends on which frontend is being used. The C++
frontend can simply call functions defined in the C backend. On the other hand,
the Java frontend can communicate with the C backend using sockets, but we
expect that performance will be improved using Java’s Native Interface, which
allows a JVM to interoperate with programs written in other languages. At the
time of this writing (May, 2003) we support direct communication with the C++
frontend and communication with sockets with the Java frontend.



When Neurondiz is started, the backend opens the data file(s) storing the
results from ooNeuroSys, and some basic information on the neurons is sent to
the frontend, which opens a display showing a rectangular grid of disks, one disk
for each neuron. In the most basic execution of Neurondiz, the program provides
an animated display of the firing of the individual neurons by changing the color
of the disks. The user can either single-step through the simulation by using
mouseclicks, or she can let the animation proceed without user interaction.

If, at any time, the user wants more detailed information, she can select a
rectangular subset of neurons and the subset will be displayed in a new window,
which supports all the functionality of the original window. For even more detail,
the user can select a single neuron and display its membrane voltage as a function
of time.

The computational neuroscientists that used the original version of Neurondiz
requested that the display also provide information on the synaptic connections
among the neurons. Of course, the interconnection network for only a few hun-
dred neurons, can contain tens-of-thousands of synaptic interconnections, which
would be impossible to display with any clarity. So after some discussion with
the neuroscientists, we developed two additional functionalities for Neurondiz.
For the first, we added a functionality that allows a user to select a subset of neu-
rons and display the interconnections among these neurons by interfacing with
the graph visualization software package, Graphviz [3]. The display showing the
neurons and their synaptic interconnections will, in general, require relocation
of the neurons relative to each other in order to achieve a reasonably clear im-
age. Thus, the selected neurons in the original display are keyed to the neurons
in the Graphviz display by assigning matching numbers to paired neurons. At
the time of this writing (May, 2003), the Graphviz interface is available only
with the Java frontend. It is supplied by a GraphViz program called Grappa.
Grappa sends a graph description to another Graphviz program called dot, and
dot generates the layout and sends the layout back to Grappa for display.

The second functionality allows neuroscientists to determine the density of
synaptic connections between two neurons. After the user selects two neurons, a
source and a destination, and enters a parameter specifying the maximum path
length, the backend will identify the subgraph consisting of all directed paths
of synaptic connections from the source to the destination that consist of a
number of synaptic connections less than or equal to the bound. The algorithm
for finding the subgraph uses two breadth-first searches. Both Neurondiz and
ooNeuroSys store synaptic interconnection information by storing lists of neurons
with synaptic connections into each neuron assigned to a process. Hence the first
breadth-first search works backwards from the target vertex. Essentially, the
standard serial breadth-first algorithm is modified so that a globally replicated
data structure records all visited vertices, and on each pass through the search
loop, each process adds any vertices that can be reached from already visited
vertices. At the end of the body of the search loop the structure recording visited
vertices is updated. The loop terminates after it has searched the tree based at
the destination with height equal to the user-specified bound.



At this point, we assume that the number of vertices visited by the breadth-
first search is small enough so that the subgraph spanned by its neurons can be
contained in the memory of a single process. So after the breadth-first search is
completed, each process allocates enough storage for an adjacency matrix on the
visited vertices. Each process initializes those columns of the matrix about which
it has information, and a global reduction using logical-or creates a copy of the
adjacency matrix on each process. The algorithm is completed by a breadth-
first-search from the source on the subgraph induced by the vertices visited in
the first search. Any unvisited vertices and edges not lying on paths with length
less than or equal to the the bound are deleted.

5 Python Interface

High speed and parallelism are certainly required for a high fidelity simulation.
However, robust, accurate, and innovative models are also necessary to achieve
understanding of neural processes. Herein lies one of the principle problems
with the development of object-oriented NeuroSys. High speed and parallelism
requirements decrease programmability, especially for non-computer scientists.
This is discouraging, particularly for smaller runs in which a scientist is trying to
develop new models. To require neuroscientists to write code in C and to compile
and link a new equation model is too great a burden. In ooNeuroSys we provide
an interface from the core simulation to the Python Interpreted language [13] so
that users can develop and run new equation models and manipulate the neural
simulation directly.

The most important considerations in the design of the Python interfaces are
simplicity and flexibility. For instance, the equations that model a simulation
variable should be simple to program and extend even for a non-programmer:

def computeHPrime(self,h,V):

def ah(v): return (0.128*exp(-(v+50.0)/18.0))

def bh(v): return (4.0/(1.0+exp(-(v+27.0)/5.0)))

h_prime = ah(V)*(1-h)-bh(V)*h

return h_prime

The user should be able to examine and change state variables and connec-
tivity:

for neuron in net:

print ’my id is’,neuron.id

print ’my adjacency_list is’,neuron.adjacency_list

for neighbor in neuron.adjacency_list:

print ’connect’,neuron.id,’with’,neighbor

print ’voltage’,neuron.V



Using these techniques, a user can setup and manipulate (steer) all relevant
parts of a simulation. Interpreted languages may be slower than compiled lan-
guages like C, but Python of the sort used in the equations can be automatically
compiled into high performance code [5, 8].

6 Performance

At the time of this writing (May 2003), we have only been able to run a few
small tests. However, these tests suggest that ooNeuroSys is both faster and more
scalable than the original NeuroSys. Table 6 shows the run times in seconds of
some simulations run on the Keck Cluster [6], a Myrinet connected cluster of
64 dual processor Pentium III’s. The systems being simulated use two neuron
models (excitatory and inhibitory neurons), and the synaptic interconnection
network was randomly generated. Each neuron is modelled with 5 variables. The
dashes in the table either correspond to data which took too long to generate or
a breakdown in the scalability of the program.

Table 1. Run Times of NeuroSys (Neuro) and ooNeuroSys (ooNeur)

Neurons
16,384 32,768 65,536 131,072 262,144

Processes Neuro ooNeur Neuro ooNeur Neuro ooNeur Neuro ooNeur Neuro ooNeur

1 544 372 1083 718 2168 1453 4295 — — —
2 277 239 543 463 1109 981 2220 1781 — —
4 140 117 275 237 561 493 1743 950 2237 1930
8 73 51 142 119 288 239 581 483 1389 978
16 40 22 76 52 152 123 464 248 604 495
32 — 11 48 24 — 57 460 125 343 258

7 Conclusions and Directions for Future Work

Object-oriented NeuroSys provides many improvements over its predecessor. Its
design provides both ease of maintenance and high performance. Preliminary
tests indicate that it is both faster and more scalable than the original NeuroSys.
The Python interface to ooNeuroSys promises to make it much easier to use. The
new version of Neurondiz has a much improved interface and considerably more
functionality.

Among other improvements to ooNeuroSys, we plan to make use of graph
partitioning software to further improve scalability. We have already begun work
on improving the scalability of I/O by incorporating some of the recommenda-
tions in [1]. By using the results of this work we hope to be able to develop a
scalable I/O scheme that is well-suited to clusters that don’t have parallel file



systems. Taken together, the Java and C++ versions of Neurondiz have all the
desired functionality. However, both need to be completed.
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